Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Braz. j. biol ; 83: e247604, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1339370

ABSTRACT

Abstract In the current report, we studied the possible inhibitors of COVID-19 from bioactive constituents of Centaurea jacea using a threefold approach consisting of quantum chemical, molecular docking and molecular dynamic techniques. Centaurea jacea is a perennial herb often used in folk medicines of dermatological complaints and fever. Moreover, anticancer, antioxidant, antibacterial and antiviral properties of its bioactive compounds are also reported. The Mpro (Main proteases) was docked with different compounds of Centaurea jacea through molecular docking. All the studied compounds including apigenin, axillarin, Centaureidin, Cirsiliol, Eupatorin and Isokaempferide, show suitable binding affinities to the binding site of SARS-CoV-2 main protease with their binding energies -6.7 kcal/mol, -7.4 kcal/mol, -7.0 kcal/mol, -5.8 kcal/mol, -6.2 kcal/mol and -6.8 kcal/mol, respectively. Among all studied compounds, axillarin was found to have maximum inhibitor efficiency followed by Centaureidin, Isokaempferide, Apigenin, Eupatorin and Cirsiliol. Our results suggested that axillarin binds with the most crucial catalytic residues CYS145 and HIS41 of the Mpro, moreover axillarin shows 5 hydrogen bond interactions and 5 hydrophobic interactions with various residues of Mpro. Furthermore, the molecular dynamic calculations over 60 ns (6×106 femtosecond) time scale also shown significant insights into the binding effects of axillarin with Mpro of SARS-CoV-2 by imitating protein like aqueous environment. From molecular dynamic calculations, the RMSD and RMSF computations indicate the stability and dynamics of the best docked complex in aqueous environment. The ADME properties and toxicity prediction analysis of axillarin also recommended it as safe drug candidate. Further, in vivo and in vitro investigations are essential to ensure the anti SARS-CoV-2 activity of all bioactive compounds particularly axillarin to encourage preventive use of Centaurea jacea against COVID-19 infections.


Resumo No presente relatório, estudamos os possíveis inibidores de Covid-19 de constituintes bioativos de Centaurea jacea usando uma abordagem tripla que consiste em técnicas de química quântica, docking molecular e dinâmica molecular. Centaurea jacea é uma erva perene frequentemente usada em remédios populares de doenças dermatológicas e febre. Além disso, as propriedades anticâncer, antioxidante, antibacteriana e antiviral de seus compostos bioativos também são relatadas. A Mpro (proteases principais) foi acoplada a diferentes compostos de Centaurea jacea por meio de docking molecular. Todos os compostos estudados, incluindo apigenina, axilarina, Centaureidina, Cirsiliol, Eupatorina e Isokaempferide, mostram afinidades de ligação adequadas ao sítio de ligação da protease principal SARS-CoV-2 com suas energias de ligação -6,7 kcal / mol, -7,4 kcal / mol, - 7,0 kcal / mol, -5,8 kcal / mol, -6,2 kcal / mol e -6,8 kcal / mol, respectivamente. Dentre todos os compostos estudados, a axilarina apresentou eficiência máxima de inibidor, seguida pela Centaureidina, Isokaempferida, Apigenina, Eupatorina e Cirsiliol. Nossos resultados sugeriram que a axilarina se liga aos resíduos catalíticos mais cruciais CYS145 e HIS41 do Mpro, além disso a axilarina mostra 5 interações de ligações de hidrogênio e 5 interações hidrofóbicas com vários resíduos de Mpro. Além disso, os cálculos de dinâmica molecular em uma escala de tempo de 60 ns (6 × 106 femtossegundos) também mostraram percepções significativas sobre os efeitos de ligação da axilarina com Mpro de SARS-CoV-2 por imitação de proteínas como o ambiente aquoso. A partir de cálculos de dinâmica molecular, os cálculos RMSD e RMSF indicam a estabilidade e dinâmica do melhor complexo ancorado em ambiente aquoso. As propriedades ADME e a análise de previsão de toxicidade da axilarina também a recomendaram como um candidato a medicamento seguro. Além disso, as investigações in vivo e in vitro são essenciais para garantir a atividade anti-SARS-CoV-2 de todos os compostos bioativos, particularmente a axilarina, para encorajar o uso preventivo de Centaurea jacea contra infecções por Covid-19.


Subject(s)
Humans , Pharmaceutical Preparations , Centaurea , COVID-19 , Protease Inhibitors , Molecular Dynamics Simulation , Molecular Docking Simulation , SARS-CoV-2
2.
São Paulo; s.n; s.n; 2023. 153 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1437804

ABSTRACT

Proteínas tirosina-fosfatase (PTPs) possuem papel fundamental na regulação da transdução de sinais e estão envolvidas em diversos processos fundamentais do ciclo celular. As Cdc25 (Cell Division Cycle 25) são fosfatases duais encontradas em todos os organismos eucarióticos e atuam em checkpoints do ciclo celular, permitindo ou inibindo o prosseguimento deste. Este grupo de proteínas pertence à classe de PTPs com atividade baseada em cisteína, apresenta domínio catalítico altamente conservado assim como o motivo catalítico, P-loop. Devido sua função, as Cdc25 são consideradas possíveis alvos terapêuticos para tratamento de câncer e sua interação com pequenas moléculas e inibidores tem sido investigada de forma que análises estruturais e de ligação das Cdc25 com inibidores podem elucidar aspectos importantes do mecanismo de ação destes além de direcionar para o desenho racional de fármacos. Interações cátion-π são interações intra ou intermoleculares não-covalentes que ocorrem entre uma espécie química catiônica, como o grupo guanidino de argininas, e uma das faces de um sistema π rico em elétrons, como dos anéis indólicos de triptofanos. Apesar de pouco discutidas na literatura, quando em comparação às interações não-covalentes mais convencionais, do ponto de vista energético as interações cátion-π são tão importantes na estruturação de proteínas quanto às ligações de hidrogênio ou pontes salinas. De fato estas interações são observadas com frequência em estruturas proteicas resolvidas. O domínio catalítico da Cdc25B possui diversas argininas expostas em sua superfície e um único resíduo de triptofano localizado na região C-terminal flexível, muito próximo do sítio catalítico da proteína. A flexibilidade de proteínas ou de regiões proteicas apresenta importante papel no reconhecimento entre biomoléculas participantes de vias de sinalização e tem sido muito estudada atualmente. Aqui, simulações de dinâmica molecular, experimentos de 1H-15N HSQC RMN, ensaios de cinética de inibição e de ancoragem molecular, evidenciam a existência de contatos cátion-π transientes na superfície de um importante membro da família das Cdc25, a Cdc25B, e de sítios de interação entre inibidores testados e a proteína com destaque a sítios na proximidades do P-loop, região próxima ao C-terminal desordenado, onde se demonstra estabilidade da interação com os pequenos ligantes


Protein tyrosine phosphatase (PTPs) play a fundamental role in the regulation of signal transduction and are involved in several fundamental processes of the cell cycle. Cdc25 (Cell Division Cycle 25) are dual phosphatases found in all eukaryotic organisms and act at checkpoints of the cell cycle, allowing or inhibiting its progression. This group of proteins belongs to the class of PTPs with cysteine-based activity, presenting a highly conserved catalytic domain as well as the catalytic motif, P-loop. Due to their function, Cdc25 are considered possible therapeutic targets for cancer treatment and their interaction with small molecules and inhibitors has been investigated so that structural and binding analyzes of Cdc25 with inhibitors can elucidate important aspects of their mechanism of action besides directing to rational drug design. Cation-π interactions are non-covalent intra- or intermolecular interactions that occur between a cationic chemical species, such as the guanidino group of arginines, and one of the faces of an electron-rich system, such as the indole rings of tryptophans. Although little discussed in the literature, when compared to more conventional non-covalent interactions, from the energetic point of view, cation-π interactions are as important in the structuring of proteins as hydrogen bonds or salt bridges. In fact, these interactions are frequently observed in solved protein structures. The catalytic domain of Cdc25B has several arginines exposed on its surface and a single tryptophan residue located in the flexible C-terminal region, very close to the catalytic site of the protein. The flexibility of proteins or protein regions plays an important role in the recognition between biomolecules participating in signaling pathways and has been extensively studied today. Here, molecular dynamics simulations, 1H-15N HSQC NMR experiments, inhibition kinetics and molecular anchoring assays, evidence the existence of transient cation-π contacts on the surface of an important member of the Cdc25 family, Cdc25B, and of sites of interaction between tested inhibitors and the protein, with emphasis on sites in the vicinity of the P-loop, a region close to the disordered C-terminus, where stability of the interaction with the small ligands is demonstrated


Subject(s)
cdc25 Phosphatases/analysis , Molecular Docking Simulation/methods , Molecular Dynamics Simulation/classification
3.
Chinese Journal of Biotechnology ; (12): 1537-1553, 2022.
Article in Chinese | WPRIM | ID: wpr-927799

ABSTRACT

Proteus mirabilis lipase (PML) features tolerance to organic solvents and great potential for biodiesel synthesis. However, the thermal stability of the enzyme needs to be improved before it can be used industrially. Various computational design strategies are emerging methods for the modification of enzyme thermal stability. In this paper, the complementary algorithm-based ABACUS, PROSS, and FoldX were employed for positive selection of PML mutations, and their pairwise intersections were further subjected to negative selection by PSSM and GREMLIN to narrow the mutation library. Thereby, 18 potential single-point mutants were screened out. According to experimental verification, 7 mutants had melting temperature (Tm) improved, and the ΔTm of K208G and G206D was the highest, which was 3.75 ℃ and 3.21 ℃, respectively. Five mutants with activity higher than the wild type (WT) were selected for combination by greedy accumulation. Finally, the Tm of the five-point combination mutant M10 increased by 10.63 ℃, and the relative activity was 140% that of the WT. K208G and G206D exhibited certain epistasis during the combination, which made a major contribution to the improvement of the thermal stability of M10. Molecular dynamics simulation indicated that new forces were generated at and around the mutation sites, and the rearrangement of forces near G206D/K208G might stabilize the Ca2+ binding site which played a key role in the stabilization of PML. This study provides an efficient and user-friendly computational design scheme for the thermal stability modification of natural enzymes and lays a foundation for the modification of PML and the expansion of its industrial applications.


Subject(s)
Enzyme Stability , Lipase/chemistry , Molecular Dynamics Simulation , Proteus mirabilis/metabolism , Solvents/chemistry
4.
Protein & Cell ; (12): 877-888, 2021.
Article in English | WPRIM | ID: wpr-922482

ABSTRACT

A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (M


Subject(s)
Humans , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Coronavirus Papain-Like Proteases/metabolism , Crystallography, X-Ray , Drug Evaluation, Preclinical , Drug Repositioning , High-Throughput Screening Assays/methods , Imidazoles/therapeutic use , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Naphthoquinones/therapeutic use , Protease Inhibitors/therapeutic use , Protein Structure, Tertiary , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification
5.
Malaysian Journal of Microbiology ; : 294-304, 2021.
Article in English | WPRIM | ID: wpr-972793

ABSTRACT

Aims@#The surplus use of herbicide Dalapon® contains 2,2-dichloropropionic acid (2,2-DCP) poses great danger to human and ecosystem due to its toxicity. Hence, this study focused on the isolation and characterization of a dehalogenase producing bacteria from Sungai Skudai, Johor, capable of utilizing 2,2-DCP as a carbon source and in silico analysis of its putative dehalogenase.@*Methodology and results@#Isolation of the target bacteria was done by using 2,2-DCP-enriched culture as the sole carbon source that allows a bacterium to grow in 20 mM of 2,2-DCP at 30 °C with the corresponding doubling time of 8.89 ± 0.03 h. The isolated bacterium was then designated as Klebsiella pneumoniae strain YZ based on biochemical tests and basic morphological examination. The full genome of K. pneumoniae strain KLPN_25 (accession number: RRE04903) which obtained from NCBI database was screened for the presence of dehalogenase gene, assuming both strains YZ and KLPN_25 were the same organisms. A putative dehalogenase gene was then identified as type II dehalogenase from the genome sequence of strain KLPN_25. The protein structure of the type II dehalogenase of KLPN_25 strain was then pairwise aligned with the crystal structure of L-2-haloacid dehalogenase (L-DEX) Pseudomonas sp. strain YL as the template, revealing the existence of conserved amino acids residues, uniquely known to participate in the dehalogenation mechanism. The finding thus implies that the amino acid residues of type II dehalogenase possibly shares similar catalytic functions with the L-DEX.@*Conclusion, significance and impact of the study@#In conclusion, this study confirmed the presence of new dehalogenase from the genus Klebsiella with potential to degrade 2,2-DCP from the river water. The structural information of type II dehalogenase provides insights for future work in designing haloacid dehalogenases.


Subject(s)
Computer Simulation , Molecular Dynamics Simulation
6.
Braz. J. Pharm. Sci. (Online) ; 56: e17420, 2020. tab, graf
Article in English | LILACS | ID: biblio-1142490

ABSTRACT

Dengue fever has emerged as a big threat to human health since the last decade owing to high morbidity with considerable mortalities. The proposed study aims at the in silico investigation of the inhibitory action against DENV4-NS1 of phytochemicals from two local medicinal plants of Pakistan. Non-Structural Protein 1 of Dengue Virus 4 (DENV4-NS1) is known to be involved in the replication and maturation of viron in the host cells. A total of 129 phytochemicals (50 from Tanacetum parthenium and 79 from Silybum marianum) were selected for this study. The tertiary structure of DENV4-NS1 was predicted based on homology modelling using Modeller 9.18 and the structural stability was evaluated using molecular dynamics simulations. Absorption, distribution, metabolism, excretion and toxicity (ADMET) along with the drug-likeness was also predicted for these phytochemicals using SwissADME and PreADMET servers. The results of ADMET and drug-likeness predictions exhibited that 54 phytochemicals i.e. 25 from Tanacetum parthenium and 29 from Silybum marianum showed effective druglikeness. These phytochemicals were docked against DENV4-NS1 using AutoDock Vina and 18 most suitable phytochemicals with binding affinities ≤ -6.0 kcal/mol were selected as potential inhibitors for DENV4-NS1. Proposed study also exploits the novel inhibitory action of Jaceidin, Centaureidin, Artecanin, Secotanaparthenolide, Artematin, Schizolaenone B, Isopomiferin, 6, 8-Diprenyleriodictyol, and Anthraxin against dengue virus. It is concluded that the screened 18 phytochemicals have strong inhibition potential against Dengue Virus 4.


Subject(s)
Computer Simulation , Proteins/classification , Dengue , Dengue Virus , Phytochemicals/analysis , Plants, Medicinal/metabolism , Pharmacokinetics , Tanacetum parthenium/adverse effects , Molecular Dynamics Simulation
7.
Chinese Journal of Biotechnology ; (12): 1819-1828, 2019.
Article in Chinese | WPRIM | ID: wpr-771750

ABSTRACT

We review major computational chemistry techniques applied in industrial enzyme studies, especially approaches intended for guiding enzyme engineering. These include molecular mechanics force field and molecular dynamics simulation, quantum mechanical and combined quantum mechanical/molecular mechanical approaches, electrostatic continuum models, molecular docking, etc. These approaches are essentially introduced from the following two angles for viewing: one is about the methods themselves, including the basic concepts, the primary computational results, and potential advantages and limitations; the other is about obtaining valuable information from the respective calculations to guide the design of mutants and mutant libraries.


Subject(s)
Enzymes , Chemistry , Genetics , Metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutant Proteins , Chemistry , Genetics , Metabolism , Protein Engineering , Quantum Theory , Static Electricity
8.
Chinese Journal of Biotechnology ; (12): 636-646, 2019.
Article in Chinese | WPRIM | ID: wpr-771345

ABSTRACT

Glutamate decarboxylase, a unique pyridoxal 5'-phosphate-dependent enzyme, catalyzes α-decarboxylation of L-glutamate to γ-aminobutyrate. However, glutamate decarboxylase from different sources has the common problem of poor thermostability that affects its application in industry. In this study, proline was introduced at 13 different positions in glutamate decarboxylase by using the design strategy of homologous sequence alignment between Thermococcus kodakarensis and Lactobacillus brevis CGMCC No.1306. A mutant enzyme G364P with higher thermostability was obtained. Compared to the wild type, thermostability of the mutant G364P was significantly improved, the half-life time (t1/2) at 55 °C and the semi-inactivation temperature (T₅₀ ¹⁵) of the mutant G364P increased 19.4 min and 5.3 °C, respectively, while kcat/Km of the mutant enzyme remained nearly unchanged. Further analysis of their thermostability by molecular dynamics simulations were performed. The root mean square deviation of G364P and root mean square fluctuation in the loop region including G364 were lower than the wild type at 313 K for 10 ns, and G364P increased one hydrophobic interaction in the loop region. It proves that mutation of flexible 364-Gly to rigid proline endows glutamate decarboxylase with enhanced thermostability.


Subject(s)
Glutamate Decarboxylase , Glutamic Acid , Levilactobacillus brevis , Molecular Dynamics Simulation , Proline
9.
Electron. j. biotechnol ; 31: 93-99, Jan. 2018. ilus, graf, tab
Article in English | LILACS | ID: biblio-1022150

ABSTRACT

Background: Peptidoglycan (PGN) recognition proteins (PGRPs) are important pattern recognition receptors of the host innate immune system that are involved in the immune defense against bacterial pathogens. PGRPs have been characterized in several fish species. The PGN-binding ability is important for the function of PGRPs. However, the PGRP-PGN interaction mechanism in fish remains unclear. In the present study, the 3-D model of a long PGRP of half-smooth tongue sole (Cynoglossus semilaevis) (csPGRP-L), a marine teleost with great economic value, was constructed through the comparative modeling method, and the key amino acids involved in the interaction with Lys-type PGNs and Dap-type PGNs were analyzed by molecular dynamics and molecular docking methods. Results: csPGRP-L possessed a typical PGRP structure, consisting of five ß-sheets and four α-helices. Molecular docking showed that the van der Waals forces had a slightly larger contribution than Coulombic interaction in the csPGRP-L-PGN complex. Moreover, the binding energies of csPGRP-L-PGNs computed by MM-PBSA method revealed that csPGRP-L might selectively bind both types of MTP-PGNs and MPP-PGNs. In addition, the binding energy of each residue of csPGRP-L was also calculated, revealing that the residues involved in the interaction with Lys-type PGNs were different from that with Dap-type PGNs. Conclusions: The 3-D structure of csPGRP-L possessed typical PGRP structure and might selectively bind both types of MTP- and MPP-PGNs, which provided useful insights to understanding the functions of fish PGRPs.


Subject(s)
Animals , Tongue/immunology , Flatfishes/immunology , Flatfishes/metabolism , Binding Sites , Flatfishes/genetics , Peptidoglycan , Carrier Proteins , Toll-Like Receptors , Molecular Dynamics Simulation , Molecular Docking Simulation , Ligands
10.
Genomics, Proteomics & Bioinformatics ; (4): 416-427, 2018.
Article in English | WPRIM | ID: wpr-772963

ABSTRACT

Androgen receptor (AR) is a ligand-activated transcription factor that plays a pivotal role in the development and progression of many severe diseases such as prostate cancer, muscle atrophy, and osteoporosis. Binding of ligands to AR triggers the conformational changes in AR that may affect the recruitment of coactivators and downstream response of AR signaling pathway. Therefore, AR ligands have great potential to treat these diseases. In this study, we searched for novel AR ligands by performing a docking-based virtual screening (VS) on the basis of the crystal structure of the AR ligand binding domain (LBD) in complex with its agonist. A total of 58 structurally diverse compounds were selected and subjected to LBD affinity assay, with five of them (HBP1-3, HBP1-17, HBP1-38, HBP1-51, and HBP1-58) exhibiting strong binding to AR-LBD. The IC values of HBP1-51 and HBP1-58 are 3.96 µM and 4.92 µM, respectively, which are even lower than that of enzalutamide (Enz, IC = 13.87 µM), a marketed second-generation AR antagonist. Further bioactivity assays suggest that HBP1-51 is an AR agonist, whereas HBP1-58 is an AR antagonist. In addition, molecular dynamics (MD) simulations and principal components analysis (PCA) were carried out to reveal the binding principle of the newly-identified AR ligands toward AR. Our modeling results indicate that the conformational changes of helix 12 induced by the bindings of antagonist and agonist are visibly different. In summary, the current study provides a highly efficient way to discover novel AR ligands, which could serve as the starting point for development of new therapeutics for AR-related diseases.


Subject(s)
Humans , Male , Androgen Receptor Antagonists , Pharmacology , Androgens , Metabolism , Pharmacology , Biological Assay , Cell Line, Tumor , Drug Discovery , Methods , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Phenylthiohydantoin , Pharmacology , Principal Component Analysis , Prostatic Neoplasms , Drug Therapy , Protein Binding , Physiology , Protein Conformation , Receptors, Androgen , Metabolism
11.
São Paulo; s.n; s.n; 2018. 85 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-982084

ABSTRACT

A doença de Chagas, causada pelo parasita Trypanosoma cruzi, acomete entre 6 a 8 milhões de pessoas em todo o mundo. Conhecida como tripanossomíase americana, por ter sido considerada endêmica apenas na América Latina, esta doença, se espalhou para outros continentes devido aos movimentos migratórios se tornando um problema de sáude mundial. Estima-se que 56.000 novos casos e cerca de 12.000 mortes por complicações relacionadas à doença de Chagas anualmente. A quimioterapia disponível para o tratamento é composta apenas por dois fármacos, nifurtimox e benznidazol, no entanto são pouco eficazes na fase crônica da doença. Estes fármacos apresentarem, ainda, efeitos adversos graves e resistência por parte de algumas cepas do parasita. Diante deste panorama, é iminente a necessidade da busca de novos fármacos contra T. cruzi. Para a busca racional de novos quimiterapicos antiparasitários é fundamental a identificação e caracterização de vias metabólicas essenciais à sobrevivência dos parasitas. Assim, a enzima sirtuína 2 - Silent Information Regulator 2 (Sir2), tem importante papel para a infecção por T. cruzi, pois está totalmente envolvida no seu ciclo celular do parasita. Esta é uma enzima NAD+ dependente da classe III histona desacetilases, e se mostra como um interessante alvo bioquímico para o desenvolvimento de antichagásicos. A disponibilidade do sequenciamento genômico da Sir2 nos permite utilizar estratégias de planejamento de fármaco baseado no receptor (SBDD - Structure Based Drug Design) na identificação de candidatos a fármacos para essa doença. Entre as técnicas modernas de SBDD utilizadas, a triagem virtual possibilita identificar e selecionar inibidores enzimáticos potentes e seletivos para o alvo escolhido. Assim, neste trabalho, foi construído por meio da técnica de modelagem comparativa o modelo da enzima Sir2 de T. cruzi. Uma simulação por dinâmica molecular de 200ns, foi realizada para averiguar a estabilidade do modelo obtido. Diante da estabilização do modelo a partir de 100ns, o mesmo foi validado utilizando análise de clusters, RMSD (Root-mean-square Deviation) e análises de frequência de ligações de hidrogênio com o Cofator (NAD+) e os aminoácidos do sítio de catálise foram observadas, estes passos de simulação e validação foram realizados no programa DESMOND. Com o modelo robusto, os campos de interações moleculares (MIFs) foram gerados no programa GRID (Molecular Discovery v2.1) com o intuito de elucidar as regiões favoráveis a interação com a enzima em relação a propriedades físico-químicas da Sir2. A partir dos MIFs favoráveis a Sir2 de T. cruzi foi possível a construção de dois modelos farmacofóricos, o qual se baseou nas interações do Cofator (NAD+) e o sítio de catálise (Nicotinamida). O mesmo foi apliacdo como filtro para Triagem Virtual no programa UNITY da plataforma SYBYL X 2.0, utilizando os bancos de dados ZINC15 e GSK. A triagem resultou na seleção de 8 compostos candidatos a inibidores. Destes foram adquiridos 6 compostos por serem considerados mais promissores devido a complementariedade molecular. Estes foram testados contra a enzima de T. cruzi Sri2. Após o ensaio foi possível avaliar a potência de 4 compostos, sendo o composto CDMS-01 (IC50 = 39,9uM) o mais promissor que será submetido à processos de otimização molecular


Chagas disease, caused by the parasite Trypanosoma cruzi, affects between 6 and 8 million people worldwide. Also known as American trypanosomiasis, because it is considered endemic only in Latin America, but has spread to other continents due to migratory movements. It is estimated that 56,000 new cases and about 12,000 deaths from complications related to Chagas disease annually. The chemotherapy available for treatment consists of only two drugs, nifurtimox and benznidazole, however these are poorly effective in the chronic phase. These drugs also have serious adverse effects and resistance from strains of the parasite. Faced with this scenario, the need to search for new drugs against T. cruzi is imminent. For the drug planning for new antiparasitic chemotherapics, the identification and characterization of metabolic pathways essential to the survival of parasites is fundamental. Therewith, the sirtuin 2 - Silent Information Regulator 2 (Sir2) enzyme has an important role for T. cruzi infection, since Sir2 in the parasite is totally involved in its cell cycle. This is an NAD+-dependent enzyme of class III histone deacetylases, and it shows an interesting biochemical target for the development of antichagasic. The availability of Sir2 genomic sequencing allows us to use SBDD (Structure Based Drug Design) strategies in identifying drug candidates for this disease. Among the modern techniques of SBDD used, virtual screening makes it possible to identify and select potent and selective enzyme inhibitors for the chosen target. The model of the T. cruzi Sir2 enzyme was constructed using the comparative modeling technique. A molecular dynamics simulation of 200ns was performed to ascertain the stability of the obtained model. Considering the stabilization of the model from 100ns, it was validated using cluster analysis, Root-mean-square Deviation (RMSD) and hydrogen bond frequency analyzes with Cofator (NAD+) and the amino acids of the catalysis site were observed, these simulation and validation steps were performed in the DESMOND program. With the robust model, the molecular interaction fields (MIFs) were generated in the GRID program (Molecular Discovery v2.1) in order to elucidate the regions favorable to the interaction with the enzyme in relation to the physicalchemical properties of Sir2. From the MIFs favorable to Sir2 of T. cruzi it was possible to construct two pharmacophoric models, which was based on the interactions of Cofator (NAD+) and the catalysis site (Nicotinamide). It was also applied as a Virtual screening filter in the UNITY program of the SYBYL X 2.0 platform, using the ZINC15 and GSK databases. Screening resulted in the selection of 8 inhibitor candidate compounds. Six compounds were obtained from the screening, because they were considered more promising, and were tested against T. cruzi Sri2 enzyme. After the assay it was possible to evaluate the potency of 4 compounds, the most promising compound being CDMS-01 (IC50 = 39.9 µM) that will be submitted to molecular optimization processes


Subject(s)
Trypanosoma cruzi/pathogenicity , Sirtuin 2/analysis , Validation Study , Drug Compounding , Sirtuin 2/antagonists & inhibitors , Molecular Dynamics Simulation , Antiparasitic Agents
12.
Genomics & Informatics ; : 142-146, 2017.
Article in English | WPRIM | ID: wpr-192018

ABSTRACT

More effective production of human insulin is important, because insulin is the main medication that is used to treat multiple types of diabetes and because many people are suffering from diabetes. The current system of insulin production is based on recombinant DNA technology, and the expression vector is composed of a preproinsulin sequence that is a fused form of an artificial leader peptide and the native proinsulin. It has been reported that the sequence of the leader peptide affects the production of insulin. To analyze how the leader peptide affects the maturation of insulin structurally, we adapted several in silico simulations using 13 artificial proinsulin sequences. Three-dimensional structures of models were predicted and compared. Although their sequences had few differences, the predicted structures were somewhat different. The structures were refined by molecular dynamics simulation, and the energy of each model was estimated. Then, protein-protein docking between the models and trypsin was carried out to compare how efficiently the protease could access the cleavage sites of the proinsulin models. The results showed some concordance with experimental results that have been reported; so, we expect our analysis will be used to predict the optimized sequence of artificial proinsulin for more effective production.


Subject(s)
Humans , Computer Simulation , DNA, Recombinant , Insulin , Molecular Dynamics Simulation , Proinsulin , Protein Sorting Signals , Trypsin
13.
Immune Network ; : 237-249, 2017.
Article in English | WPRIM | ID: wpr-22201

ABSTRACT

Using biomarkers as prediction tools or therapeutic targets can be a valuable strategy in transplantation. Recent studies identified biomarkers of acute rejection (AR) and operational tolerance (TOL) through the application of meta-analysis. In this study, we comparatively analyzed the signature genes in acute rejection and operational tolerance seen in human allogeneic transplantations using massive bioinformatical meta-analysis. To identify the signature genes in opposite immunological conditions, AR and TOL, we first collected the 1,252 gene expression data specifically intended for those circumstances. Then we excluded based on biological cut-values, Principal Component Analysis (PCA) as well as Multi-Dimensional Scaling (MDS). Using differentially expressed genes (DEGs) from meta-analysis, we then applied a ranked scoring system to identify the signature genes of AR and TOL. We identified 53 up-regulated and 32 down-regulated signature genes in acute rejection condition. Among them, ISG20, CXCL9, CXCL10, CCL19, FCER1G, PMSE1, UBD are highly expressed in AR condition. In operational tolerance, we identified 110 up-regulated and 48 down-regulated signature genes. TCL1A, BLNK, MS4A1, EBF1, IGHM are up-regulated in TOL condition. These genes are highly representative of AR or TOL across the different organs such as liver, kidney and heart. Since immune response is the sum of complex biological and molecular dynamics, these signature genes as well as pathway analysis using a systems biology approach could be used to catch the insights of the certain pathways that would be overlooked with the conventional gene-level comparative analysis.


Subject(s)
Humans , Biomarkers , Gene Expression , Graft Rejection , Heart , Kidney , Liver , Molecular Dynamics Simulation , Principal Component Analysis , Systems Biology , Transplantation Tolerance
14.
Mem. Inst. Oswaldo Cruz ; 111(12): 721-730, Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-829257

ABSTRACT

The main challenge in the control of malaria has been the emergence of drug-resistant parasites. The presence of drug-resistant Plasmodium sp. has raised the need for new antimalarial drugs. Molecular modelling techniques have been used as tools to develop new drugs. In this study, we employed virtual screening of a pyrazol derivative (Tx001) against four malaria targets: plasmepsin-IV, plasmepsin-II, falcipain-II, and PfATP6. The receiver operating characteristic curves and area under the curve (AUC) were established for each molecular target. The AUC values obtained for plasmepsin-IV, plasmepsin-II, and falcipain-II were 0.64, 0.92, and 0.94, respectively. All docking simulations were carried out using AutoDock Vina software. The ligand Tx001 exhibited a better interaction with PfATP6 than with the reference compound (-12.2 versus -6.8 Kcal/mol). The Tx001-PfATP6 complex was submitted to molecular dynamics simulations in vacuum implemented on an NAMD program. The ligand Tx001 docked at the same binding site as thapsigargin, which is a natural inhibitor of PfATP6. Compound TX001 was evaluated in vitro with a P. falciparum strain (W2) and a human cell line (WI-26VA4). Tx001 was discovered to be active against P. falciparum (IC50 = 8.2 µM) and inactive against WI-26VA4 (IC50 > 200 µM). Further ligand optimisation cycles generated new prospects for docking and biological assays.


Subject(s)
Humans , Antimalarials/chemistry , Aspartic Acid Endopeptidases/chemistry , Cysteine Endopeptidases/chemistry , Molecular Dynamics Simulation , Protozoan Proteins/chemistry , Thapsigargin/chemistry , Computational Biology/methods , Molecular Targeted Therapy/methods
15.
Rev. cuba. ortop. traumatol ; 30(2): 0-0, jul.-dic. 2016. ilus
Article in Spanish | LILACS, CUMED | ID: biblio-845065

ABSTRACT

Introducción: con el desarrollo de la informática surgen nuevos caminos a soluciones de problemas en la práctica clínica. La modelación de tejidos desempeña un papel importante en el desarrollo de la medicina; la experimentación en pacientes vivos dificulta la obtención de resultados, de ahí la necesidad de buscar alternativas para mejorar la calidad del servicio de salud. Objetivo: valorar la importancia de la modelación computacional de tejidos biológicos en niños con torsión tibial. Métodos: se entrevistaron 44 especialistas entre doctores, técnicos en imágenes médicas, ingenieros mecánicos e ingenieros cibernéticos. Fue empleada una encuesta no estructurada sin guion previo. Resultados: se aplicaron valores empíricos de cargas para corregir deformidades como la torsión tibial, el 81 por ciento de los encuestados conocen acerca las ventajas de las simulaciones computacionales aplicadas a la salud, el 17 por ciento opina que faltan recursos informáticos en los hospitales para emplear estas técnicas, el 2 por ciento cree que se debe capacitar a los doctores en el empleo de estas herramientas para apoyar la toma de decisiones y el diagnóstico clínico. Conclusiones: la encuesta proporcionó datos conclusivos sobre la posibilidad e interés de la aplicación de los modelos computacionales en el diagnóstico, pronóstico y seguimiento de enfermedades ortopédicas(AU)


Introduction: the development of information brings new paths to solve problems in the clinical practice. Tissue modeling plays an important role in the development of medicine, experimentation on living patients makes it difficult to some extent the results, hence the need to seek alternatives to improve the quality of health service. Objective: assess the importance of computational modeling of biological tissues in pediatric orthopedics, specifically in children with tibial torsion. Methods: forty-four specialists were interviewed including physicians, technicians in medical imaging, mechanical engineers, and cyber engineers. It an unscripted survey unstructured was used. Results: empirical values of loads are applied to correct deformities such as tibial torsion; 81 percent of respondents know about the advantages of computer simulations for health, 17 percent think that missing computer resources in hospitals to employ these techniques, 2 percent believes that doctors should be trained in the use of these tools to support decision-making and clinical diagnosis. Conclusions: the survey provided conclusive data on the ability and interest of the application of computational models in the diagnosis, prognosis, and monitoring of orthopedic diseases(AU)


Introduction: à fur et à mesure que l'informatique se développe, de nouvelles solutions aux problèmes de la pratique clinique apparaissent. La modélisation de tissus joue un rôle essentiel dans le développement de la médecine; l'expérimentation sur des patients vivants empêche l'obtention de résultats, il est pourtant nécessaire de chercher d'autres alternatives afin d'améliorer la qualité du service sanitaire. Objectif: le but de cette étude est d'évaluer l'importance de la modélisation assistée par ordinateur des tissus biologiques chez des enfants atteints de torsion tibiale. Méthodes: Quarante et quatre spécialistes, tels que médecins, techniciens en imagerie médicale, ingénieurs mécaniques et ingénieurs cybernétiques, ont été enquêtés. L'enquête utilisée n'avait aucune structure, aucun plan à suivre. Résultats: Des valeurs empiriques de charge ont été utilisées pour corriger des déformations, telles que la torsion tibiale; la majorité des enquêtés (81 pourcent) connaissent bien les bénéfices de la modélisation assistée par ordinateur appliqués à la santé ; la moitié (17 pourcent) considère qu'il y a un déficit de ressources informatiques dans les hôpitaux pour employer cette technique, tandis que la minorité (2 pourcent) croie qu'il faut que les médecins acquissent les habiletés nécessaires pour utiliser cet outil dans la prise de décisions et le diagnostic clinique. Conclusions: L'enquête a fourni des données incontestables sur la possibilité et l'intérêt à mettre en application la modélisation assistée par ordinateur dans le diagnostic, le pronostic et le suivi d'affections orthopédiques (AU)


Subject(s)
Humans , Child , Adolescent , Quality of Health Care/trends , Tibia , Bone and Bones , Professional Training , Molecular Dynamics Simulation/trends , Computer Simulation , Surveys and Questionnaires
16.
Genomics & Informatics ; : 53-61, 2016.
Article in English | WPRIM | ID: wpr-213649

ABSTRACT

Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins—namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.


Subject(s)
Humans , Chorioretinitis , Drug Design , Encephalitis , Hydrophobic and Hydrophilic Interactions , Machine Learning , Membranes , Molecular Docking Simulation , Molecular Dynamics Simulation , Neck , Parasites , Pliability , Toxoplasma , Toxoplasmosis , Uveitis
17.
Biomolecules & Therapeutics ; : 191-198, 2016.
Article in English | WPRIM | ID: wpr-177270

ABSTRACT

The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily. The VDR binds to active vitamin D3 metabolites, which stimulates downstream transduction signaling involved in various physiological activities such as calcium homeostasis, bone mineralization, and cell differentiation. Quercetin is a widely distributed flavonoid in nature that is known to enhance transactivation of VDR target genes. However, the detailed molecular mechanism underlying VDR activation by quercetin is not well understood. We first demonstrated the interaction between quercetin and the VDR at the molecular level by using fluorescence quenching and saturation transfer difference (STD) NMR experiments. The dissociation constant (K(d)) of quercetin and the VDR was 21.15 ± 4.31 µM, and the mapping of quercetin subsites for VDR binding was performed using STD-NMR. The binding mode of quercetin was investigated by a docking study combined with molecular dynamics (MD) simulation. Quercetin might serve as a scaffold for the development of VDR modulators with selective biological activities.


Subject(s)
Calcification, Physiologic , Calcium , Cell Differentiation , Cholecalciferol , Fluorescence , Homeostasis , Molecular Dynamics Simulation , Quercetin , Receptors, Calcitriol , Transcriptional Activation , Vitamin D , Vitamins
18.
Chinese Medical Journal ; (24): 860-867, 2016.
Article in English | WPRIM | ID: wpr-328143

ABSTRACT

<p><b>BACKGROUND</b>Congenital cataract (CC) is the leading cause of visual impairment or blindness in children worldwide. Because of highly genetic and clinical heterogeneity, a molecular diagnosis of the lens disease remains a challenge.</p><p><b>METHODS</b>In this study, we tested a three-generation Chinese family with autosomal dominant CCs by targeted sequencing of 45 CC genes on next generation sequencing and evaluated the pathogenicity of the detected mutation by protein structure, pedigree validation, and molecular dynamics (MD) simulation.</p><p><b>RESULTS</b>A novel 15 bp deletion on GJA8 (c.426_440delGCTGGAGGGGACCCT or p. 143_147delLEGTL) was detected in the family. The deletion, concerned with an in-frame deletion of 5 amino acid residues in a highly evolutionarily conserved region within the cytoplasmic loop domain of the gap junction channel protein connexin 50 (Cx50), was in full cosegregation with the cataract phenotypes in the family but not found in 1100 control exomes. MD simulation revealed that the introduction of the deletion destabilized the Cx50 gap junction channel, indicating the deletion as a dominant-negative mutation.</p><p><b>CONCLUSIONS</b>The above results support the pathogenic role of the 15 bp deletion on GJA8 in the Chinese family and demonstrate targeted genes sequencing as a resolution to molecular diagnosis of CCs.</p>


Subject(s)
Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Cataract , Genetics , Connexins , Chemistry , Genetics , Gene Deletion , High-Throughput Nucleotide Sequencing , Molecular Dynamics Simulation , Mutation
19.
Chinese Journal of Biotechnology ; (12): 669-682, 2016.
Article in Chinese | WPRIM | ID: wpr-337432

ABSTRACT

Faldaprevir analogue molecule (FAM) has been reported to effectively inhibit the catalytic activity of HCV NS3/4A protease, making it a potential lead compound against HCV. A series of HCV NS3/4A protease crystal structures were analyzed by bioinformatics methods, and the FAM-HCV NS3/4A protease crystal structure was chosen for this study. A 20.4 ns molecular dynamics simulation of the complex consists of HCV NS3/4A protease and FAM was conducted. The key amino acid residues for interaction and the binding driving force for the molecular recognition between the protease and FAM were identified from the hydrogen bonds and binding free energy analyses. With the driving force of hydrogen bonds and van der Waals, FAM specifically bind to the active pocket of HCV NS3/4A protease, including V130-S137, F152-D166, D77-D79 and V55, which agreed with the experimental data. The effect of R155K, D168E/V and V170T site-directed mutagenesis on FAM molecular recognition was analyzed for their effect on drug resistance, which provided the possible molecular explanation of FAM resistance. Finally, the system conformational change was explored by using free energy landscape and conformational cluster. The result showed four kinds of dominant conformation, which provides theoretical basis for subsequent design of Faldaprevir analogue inhibitors based on the structure of HCV NS3/4A protease.


Subject(s)
Antiviral Agents , Chemistry , Carrier Proteins , Chemistry , Drug Resistance, Viral , Endopeptidases , Hepacivirus , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Oligopeptides , Chemistry , Protease Inhibitors , Chemistry , Serine Proteases , Thiazoles , Chemistry , Viral Nonstructural Proteins , Chemistry
20.
Protein & Cell ; (12): 501-515, 2016.
Article in English | WPRIM | ID: wpr-757411

ABSTRACT

β/γ-Crystallins are predominant structural proteins in the cytoplasm of lens fiber cells and share a similar fold composing of four Greek-key motifs divided into two domains. Numerous cataract-causing mutations have been identified in various β/γ-crystallins, but the mechanisms underlying cataract caused by most mutations remains uncharacterized. The S228P mutation in βB1-crystallin has been linked to autosomal dominant congenital nuclear cataract. Here we found that the S228P mutant was prone to aggregate and degrade in both of the human and E. coli cells. The intracellular S228P aggregates could be redissolved by lanosterol. The S228P mutation modified the refolding pathway of βB1-crystallin by affecting the formation of the dimeric intermediate but not the monomeric intermediate. Compared with native βB1-crystallin, the refolded S228P protein had less packed structures, unquenched Trp fluorophores and increased hydrophobic exposure. The refolded S228P protein was prone to aggregate at the physiological temperature and decreased the protective effect of βB1-crystallin on βA3-crystallin. Molecular dynamic simulation studies indicated that the mutation decreased the subunit binding energy and modified the distribution of surface electrostatic potentials. More importantly, the mutation separated two interacting loops in the C-terminal domain, which shielded the hydrophobic core from solvent in native βB1-crystallin. These two interacting loops are highly conserved in both of the N- and C-terminal domains of all β/γ-crystallins. We propose that these two interacting loops play an important role in the folding and structural stability of β/γ-crystallin domains by protecting the hydrophobic core from solvent access.


Subject(s)
Humans , Amino Acid Substitution , Cataract , Genetics , Metabolism , HeLa Cells , Molecular Dynamics Simulation , Mutation, Missense , Protein Aggregation, Pathological , Genetics , Metabolism , Protein Domains , Protein Structure, Secondary , Proteolysis , beta-Crystallin B Chain , Chemistry , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL